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Abstract

Motivated by previous work of Li and Rimoldi for obtaining bandwidth efficient
TCM signals with finite decoding delay, we present an alternative representation for
their encoder/signal mapper transmitter structure which merely consists of a single
filter (with complex impulse response) having an input equal to the (+1,-1)
equivalent of the (0,1) inoput data bits in their implementation. The filter impulse
response is of duration (v+1)7, (v is memory of the modulation, 7, is the bit time,
and V7, is the decoding delay) and can be constructed by designing its v+1 bit time
partitions in terms of the waveform differences that characterize the finite decoding
delay conditions found by Li and Rimoldi. The advantage of this simpler
transmitter structure is that it readily allows computation of the modulation’s
power spectral density from which one can determine the conditions that must be
imposed on the signal design to produce an equivalent low pass power spectral
density. This in turn allows for a straightforward procedure for designing the
optimum signals to produce maximum bandwidth efficiency as measured by
fractional out-of-band power. Such optimum signal designs are determined for
memory one and memory two modulations and presented as examples of the
application of the general results.
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1. Introduction

In a paper presented at the 1997 International Symposium on Information Theory
[1], Li and Rimoldi presented a particular transmitter structure (the combination of
an encoder of memory v and a waveform mapper - see Fig. 1) for trellis-coded
modulations (TCMs) that under certain constraints placed on the differences of the
transmitted waveforms guaranteed decoding (using a conventional trellis decoder)
with a finite (v bit duration) delay. Specifically, the encoder was simply a tapped
delay line whose v taps together with the input bit were mapped into a set of

M =2""" waveforms (signals) of one bit duration (7,) in accordance with a binary
coded decimal (BCD) relationship. That is, if U, €0,1 denotes the nth input bit and
U,,.U,,,.,U,_, the previous v bits (the state of the encoder), then the signal
transmitted in the interval n7, <r<(n+1)T, would be s,(r) where the index i is
defined in terms of these bitsby i=U, x2"+U,_ x2""+..+U,_,_ x2'+U,_, x2°. It
was also shown in [1] that, in addition to the constraints placed on the waveform
differences, it was possible to further constrain the signals so as to maximize the
value of the minimum squared Euclidean distance taken over all pairs of error
event paths, namely, d%, =2. Such a maximum value of d,, , which corresponds
to a number of binary modulations such as binary phase-shift-keying (BPSK) and the
more bandwidth efficient minimum-shift-keying (MSK), indicates that the receiver
is providing optimum reception from a power conservation standpoint. Finally, in
the presence of all of the above constaints, Li and Rimoldi [1] showed that it is
possible to further optimize the system by selecting a set of waveforms that
minimize the bandwidth-bit time product BT,.

In this paper, we investigate an alternative (simpler) representation of the
transmitter configuration suggested in [1] which consists of nothing more than a
single filter (with complex impulse response) whose input is the *1 equivalent of
the input data bits, namely, U, =1-2U, for alln. This representation comes about
by viewing the transmitted signal as a random pulse train with a pulse shape that
extends beyond a single bit interval, i.e., one that contributes intersymbol
interference (ISI) to its neighbors. As we shall see, such a pulse shape of duration



(v+ )T, can be constructed by designing its v +1 partitions of duration 7, sec in
terms of the waveform differences that are outputted from Li and Rimoldi’s
transmitter. Such an ISI-based transmitter representation has the advantage that the
power spectral density (PSD) and hence the bandwidth are readily evaluated using
known results for uncoded random binary complex pulse trains. It also allows
applying the insight provided in Forney’s classic paper [2] on the Viterbi algorithm,
in particular the discussion regarding the use of this algorithm to combat ISI.

One of the requirements placed on the set of possible transmitted waveforms
5,(t),i=0,1,...,M in [1] is that they all have equal energy.! The impact of relaxing
the equal energy restriction on the power efficiency of the modulation scheme in its
ability to achieve the largest value of d2,, has also been investigated but is omitted
here in the interest of brevity. Suffice it to say that with an additional set of
constraints (now on the differences of the energies of the signals) that must be
satisfied to achieve the same finite decoding delay, the optimum sequence receiver
results in a signal design with a maximum value of 42, less than two. Allowing the
signals to have unequal energy, however, suggests the possibility of additional
flexibility in the design of these signals in order to achieve the best bandwidth
efficiency, i.e., the reduction in d’,, caused by the unequal energy requirement can
possibly trade off against an additional reduction in signal bandwidth. Additional
consideration of this notion warrants investigation.

2. ISI-Based Transmitter Implementation

The decomposition of a memory modulation into a cascade of an encoder and a
memoryless modulator was first applied to continuous phase modulation (CPM) by
Rimoldi [3]. In particular, for MSK, a special case of CPM corresponding to a
rectangular frequency pulse of duration 7, sec (full response) and frequency
modulation index (two-sided frequency deviation normalized by the bit rate) 2=0.5,
the memory is v =1 and a transmitter analogous to Fig. 1 was obtained as in Fig. 2.
Comparing Figs. 1 and 2 we note that in the latter the state is represented by the
differentially encoded version of the current input bit V, =U, ®V,_, whereas in the
former it would be just the previous input bit U,_, itself. Furthermore, because of
the differential encoding associated with the state in Fig. 2, a differential decoder

INote that the assumption of equal energy does not imply constant envelope as was the case for the
continuous phase modulations (CPMs) studied in [3] which served as the motivation for the work
leading up to the results in [1]. Nevertheless, the envelope fluctuation of the resulting signal designs
will be small when compared with Nyquist designs of comparable bandwidth efficiencies.
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would be required in the receiver following the trellis decoder which results in a
small loss in bit error probability (BEP) performance. It is well known [4, Chap. 10]
that precoding true MSK with a differential decoder at the transmitter results in a
modulation that is equivalent (spectral and power efficiently) to MSK but without
the need for differential decoding at the receiver. It is such precoded MSK that is
implemented by the simpler configuration of Fig. 1. In what follows, when

referring to MSK in the context of Fig. 1 or its equivalents, we shall assume that
precoded MSK is what is implied.

Consider an uncoded random binary (%1) sequence {(7,‘} which generates a
random pulse train

oo

s'(t)= Y, U,p(t-nT,) D

n=—oo

where p(t)£p,(t)+ jp,(t) is a complex pulse shape defined on the interval
0<t<(v+1)T,. Consider partitioning p(¢) into v+1 adjoint pieces corresponding to
its one-bit interval sections. That is we define the set of 7,-sec duration waveforms

p(t+kT), 0<t<T,

' Pk(t)épkk(t)"'jpnc(t):{ , k=012,.,v )

0, otherwise
From (1), in any 7,-sec interval, e.g., the nth, the signal s’(z) will be described by one

of M =2""" complex waveforms, i.e.,s;(t—nT,), k=0,12,..,2"" -1, which are
expressed in terms of p(z) and the data sequence {(—J—n} by

si(t—nT,)=U,p,(t—nT,)+U,_p(t—nT,)+..+U,_,p,(t-nT,), k=0,12,.,2"*" -1
3)

where the index k is the equivalent (0,1) bit sequence {U,,U,_,,....U,_,} expressed in
BCD form. As an example, the set of waveforms for memory v =2 is given below:

)= po
P t—nY;,) = Po(t_nTb) - Pl(t_n];) + Pz(t’ n];)’ s::(t— ’ﬂ;;) = Po(t_'ﬂ;;)_ pl(t_’ﬂ;) Pz(t"'
t=nT,)==py(t=nT,)+ p(t = nT,) + p,(t = nT,), s5(t = nT, ) = —py(t = nT, ) + p,(t = nT; ) = py(
)==po{t=nT;)= pt =nT ) pult =Ty} 50 =) = =1~ nT) = (1= nT,) -
4)
We note from (4) that because of the BCD construction, the following
properties hold for the signal differences:

= polt=nT,)+ p\(t~nT;)+ py(s=nT,). (s~ nT,) = py(t =)+ py(t =nT,) = poft=nT,
- nT,

)

)

t—nT,
Pz(‘t -nl,

)
)
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5o(8) = 57(e) = 53(6) = 53(1) = 53(e) = 55(1) = 5(£) = 57(8) = 2, (1) (5a)

so(1) = 53(0) = 53 (1) = s5(1) = 2, (1) (5b)
Also, an equivalent (at least in so far as the first equality is concerned) condition to
(5b) is

53(1) = 54(1) = 55(1) = 5(1) = 2y ) (5¢)

In the more generic case for arbitrary v, the conditions corresponding to (5a)
and (5b) would be summarized as:

S5() = 550 (1) = S () = St o ()= 2D, (1), m=0,12,,v =1, [=12,.,2"" 1
(6)

and in addition the generalization of (5¢c) becomes

$3(0) =53, ()= 85,1 (D) = 50 5 (8) = 2 ()
_ (7)

Associating the 2"*' signals {s;(r)} expressed as in (3) with the assumed equal energy
{s.(r)} derived from the implementation in Fig. 1, we see that the conditions on the
signal differences of s/(¢) given in (6) are precisely those of Theorem I in [1] which
guarantees a finite decoding delay of v bits using an optimum trellis-coded
receiver.Z Therefore, since p(t) is entirely specified by its adjoint 7,-sec sections
pi(t),i=0,1,...,v , it would appear that the transmitter of Fig. 1 can be equivalently
implemented (see Fig. 3) by passing the input *1 data sequence {(7,,} (modeled as a
random impulse train) through a filter with complex impulse response

PO=3p(-i%) pO=3]560)- 5 ()] ®)

or equivalently, the real and imaginary parts of the baseband signal (to be modulated
onto quadrature carriers for transmission over the channel) can be obtained by
passing the common input 1 data sequence {[7,,} through a pair of filters with
respective impulse responses

21t has also been noted by Li and Rimoldi that these conditions guarantee that the Euclidean
distance between any pair of paths in the trellis decoder that diverge at time n and remerge at time
n+v+1 is the same. Furthermore, the number of correlators (matched filters) needed to implement the
optimum (MLSE) receiver will now vary linearly with memory, i.e., v+1, as opposed to

exponentially with memory, i.e., 2¥+1, which is the case when no constraints are imposed on the
decoding delay.



Palt) =3 [530(0) =55 O} £u6) =3 [570(0) =570, 0) ©)
Unfortunately, the implementation in Fig. 3 is not always equivalent to that in Fig.
1, but as we shall see momentarily, for the case of most practical interest, i.e., a signal
set {s5,(r)} with maximum minimum Euclidean distance between its members, the
equivalence between the two implementations is guaranteed, i.e., {s;(z)} and {s,(¢)}
are identical. Before showing this, we note that even though p,(¢) and p,(t) are
constructed from the real and imaginary components of a set of equal energy
complex signals {s,:(t), k=0,1,2,..,2"" - 1}, they themselves do not necessarily have
equal energy. We shall see that this is true even for the simple case of MSK.

Note that because of the symmetry of the BCD mapping, the signals in the
memory 2 example of (4) also satisfy the conditions

so(t) = =s7(t), 5,(8) = ~5(2), 53(¢) = ~s5(1), 55(¢) = =5 (1) (10)
which in the case of arbitrary memory v would become

si(t)= —s;"f’-—l—m (¢),m=0,1,...,2" -1 (11)
The conditions of (11) which correspond to an antipodal signaling set are precisely
those given in [1] that achieve the maximum value of minimum squared Euclidean
distance, namely, d2, =2. Thus, the implementation of Fig. 3 not only achieves
finite decoding delay but also automatically achieves the optimum performance
from the standpoint of power efficiency. This result should not be surprising in
view of the findings in [2] which indicate that a maximum-likelihood (optimum)
sequence estimator (MLSE) form of receiver such as the trellis decoder can
completely remove the ISI and thereby achieve the performance of a zero ISI (full
response) system. However, since the implementation of Fig. 1 can produce a set of
signals {s,(¢)} that satisfy the difference properties needed for finite decoding delay
without requiring them to have maximum minimum Euclidean distance, then the
two implementations will be equivalent, i.e., {s,(t)} ={s;()} only when this
additional requirement is imposed. A formal proof of this equivalence is discussed
in the longer version of the Li and Rimoldi paper in [1]. In what follows, we
consider only the practically important case of antipodal signal sets and as such drop
the prime notation on the signals derived from p(z).

What remains is to consider the bandwidth efficiency of signals designed
according to the constraints of (6), (7), and (11). This is where the ISI-based
representation of Fig. 3 helps considerably since the evaluation of the PSD of the
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transmitted signal can be trivially accomplished using well-known relations [4] for
random pulse trains. This is considered in the next section.

3. Evaluation of the Power Spectral Density

In this section we compute the PSD of a random complex pulse train, e.g., that in (1),
modulated onto quadrature carriers. That is, if the transmitted bandpass signal is

given by3

§m=mbmw%}(z, ]mﬂ#t(EUm )mmyuu)

then it is straightforward to show using an extension of the methods in [4, Chap. 2]
that the PSD of 5(¢) is given by

S(f)——P(f f)+ B = f) + l (f+£,) = iR (f+ 1) .
=Su(f)+Sz(f)
where
R(N2HP )} B(f)2FHpi(0)} (14)

are the Fourier transforms of the real and imaginary pulse shapes which, in general,
are complex functions of f and the u and I subscripts denote upper and lower
sideband, respectively. Note that the signal in (12) differs from the usual quadrature
phase-shift-keying (QPSK)-type of signal in that here the same data sequence is
passed through both the inphase (I) and quadrature (Q) filters whereas for QPSK the
two sequences passing through these filters would be different and independent of
one another. As such, the PSD in (13) cannot, in general, be written in the form [4,
Chap. 2, Eq. (2.131)].

1 1
S(f) =756 = £)+76(F + 1) (15)
where G(f) is the equivalent baseband (symmetrical around f=0) PSD and is a real
function of fand f, is some arbitrary carrier frequency.

3We use the notation “ f,,” for the actual modulating frequency of the quadrature carriers to
distinguish it from the carrier frequency around which the PSD is symmetric which will be denoted by
“ f.”. More about this shortly.

“What is meant by an “equivalent baseband PSD” is a PSD around zero frequency that is identical to
the upper or lower sideband of the bandpass PSD frequency-shifted to the origin. While it is always
possible to obtain a symmetric PSD around the origin by demodulating the bandpass signal with a



To illustrate the above point consider the specific case of MSK (v =1) for
which the four complex signals are given by®

; .m . m . i
5(1) =0+ j1, sl(t)=sm—]—;)-—]cost=so(t)e T, )
5,(8)==5,(2), s,(t)==5,(¢)
In terms of the ISI-based representation, we obtain from (8) that

(t)—lsin£+ i1 1-cosZ
Pty =3 st t75 T

b b

(17)
pl(t)=—lsin£+jl 1+cos 2
27T, 72 T,
Thus, using (17) to define the complex pulse shape of (8), we obtain
1. m 1 mt
p(t)=551n?b+]-2—|}—cos}b—], 0<t<2T, (18)

That is, an appropriate implementation for MSK which guarantees a decoding delay
of one bit is that of Fig. 3 with I and Q filters having impulse responses

1 Fira
t)=—sin—, 0<r<2T
PR() ) T, b

1 t 19)
p,(t)= 5[1 - cos?], 0<r<2T,

b
Taking the Fourier transforms of p,(¢) and p,() of (8) and using these in (13) we

arrive at the following result for the bandpass PSD:

_Tsin’2n(f - £,)1, 1 1T
=% n* [1‘2(f—fm)72 * 2(f—fm)72}

(20)

5 sin® 27(f + £, )7, 1 _ 1
4 n? 1+2(f+£,)T, 2(f+f,

carrier at some frequency f, (not necessarily equal to the modulating frequency f, ), the resulting PSD

)TJ =S5.(f)+5(f)

will, in general, be a combination (sum) of the aliased upper and lower sidebands and depending on the
relative spacing between f, and f, may or may not appear as a simple frequency translation of either
of these sidebands.

SNote that for the Rimoldi decomposition of MSK illustrated in Fig. 2, the signals satisfy the

condition s,(t)—s,(¢) = —(s2 (1) -s, (t)) rather than s,(¢)—s,(¢) = 5,() = 5,(t) as in (5a).
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Note that while S(f) is an even function of f (as it should be for a real signal), its
upper and lower sidebands S,(f) and §,(f) are not symmetric around f, and -f,,
respectively. However, there does exist a frequency, f, # f,, around which the
upper sideband (and similarly for the lower sideband) is symmetric. To understand
why this is so, we remind the reader that according to Rimoldi’s decomposition [3],
the modulation frequency chosen for the quadrature carriers should be shifted from
the carrier frequency f, around which the bandpass spectrum is to be symmetric by
an amount equal to 1/47,,i.e., f, = f. —1/4T,. The reason for this stems from the
fact that the specification of the signals as in (16) results in a tilted trellis where the
phase tilt is equal to 7 /2 radians. (Note that a frequency shift of Af =1/47T, is equal
to a phase shift 27AfT =n/2). To demonstrate that this is indeed the case, we
evaluate the PSD of MSK using (20) with the shifted value of modulating frequency
f. = f.—1/4T,. When this is done the result in (15) is obtained with

16T, cos’2
G(f) = S 2,
m° (1-16°T})
which corresponds (except for a normalization factor) to the well-know PSD of MSK
[4, Chap. 2, Eq. (2.148)].

(21)

The question now that comes about is: For arbitrary memory v and a
baseband signal design satisfying (6), (7) and (11), is it possible to find a modulating
frequency f, that will produce a symmetric bandpass PSD around some other carrier
frequency f.? If not then one cannot find an equivalent baseband PSD and hence
the bandwidth (whatever measure is used) of the signal must be determined from
the RF waveform.

3.1 The Memory One Case

To shed some light on the answer to the above question, we consider the simplest
case of unit memory where the complex pulse shape of (8) is simply given by

P0=3[5(0= 50+ 5o(t=T)=s,(t =T
1 (22)
=E[so(t)+so(t—7;,)+S,(t)+sz(t—7;,)], 0<t<2T,

where, in accordance with (11), we have used the fact that s,(¢) = -s,(¢) in order to
achieve d’,, =2. The Fourier transform of p(t) in (22) is given by



P(f)= %[JOT 1+ )e S [T, ()™ 2+ [ sz(t)e'jz"f'dt] (23)
Since from (13) the upper spectral sideband is S,(f) = ﬁlP( f-1, )Iz, then in order for
b

this to be symmetric around f,, we must have

(s + 7= 1) =P~ - £ (24)
or letting f,£f - f, denote the separation between the actual modulation frequency

and the bandpass frequency around which symmetry is desired, s,(f) and 5,(¢) must
be chosen to satisfy

[P+ A =[P(% - 1) (252)

or equivalently

[P( P'(f - (25b)
for some fx In terms of (23), the spectral equality in (25b) requires that we have

“‘ o(F)e™ 7 ) T2 g 4. g P71V J‘ (so(0)e” 254112 gy

+ I (t)e zzm e 12 gt 4 o 12T+ )Ty J ( (t)e ;279‘,:) "JZﬂﬁdt'

(26)
= ob(s;(t)ejzw) —i2npt gy oI5 J‘ ( (t)ejzmz) i gy
+J t)eﬂmt ~i2af g o QJ2n(fi- f)TbJ’ ( (t)e’z'g"') ﬂmdtr
Sufficient conditions on the signals {s,()} for (26) to be satisfied are
5,(t) = s,(0)e’*™,  s5,(t) = /¥ FBos (r)e! 4™ (27)

However, since in arriving at (26) we have already assumed that 5,(t)=-s,(2), then
(27) further requires that f, =1/47T, from which we obtain the complete signal set

5(1)= 5™, 5,(6)==53()™'%,  5,(1) = =5, (¢) (28)
Note that for memory one it is only necessary to specify s,(r) in order to arrive at the
complete signal set. Also, the signal set of (28) satisfies the finite decoding delay
condition of [1], namely, s,(z) - s,(¢) = s,(¢) - 5,(2).

The equivalent lowpass PSD is obtained by first using s,() = —s,(¢) in (23)
resulting in
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P =[S0+ SN+ ™ (S,(F)= ()] 29)

from which one immediately gets

"Tl;|P(f)|2 = ﬁ[lso (N +B +Re(55(N+ S (NS - S} @0y

In (29) and (30), S;(f) denotes the Fourier transform of s,(¢). Using the first
symmetry condition of (28) in (30) gives the desired equivalent lowpass PSD,
namely,

2

—%;IP(f+ﬁ;)| |5, + 2 | L~ sin 27T, | + [Sy(~f + ot [1 + sin 2T,

+2[Re{S,(f + ok {8 (= £ + 2 )} + Re{,(~F + k) im{ S, (# + k5 )} [cos 2T,
(31)
which is clearly an even function of frequency.

Although (28) is satisfied by the MSK signals of (16) as should be the case, this
condition applies in a more general context since it does not explicitly specify s,(¢)
but rather only the relation between s,(t) and s,(z). This should not be surprising
since it has been shown in the past that there exists an entire class of MSK-type
signals (referred to in [5] as generalized MSK) which happen to also be constant
envelope (in addition to being equal energy) and achieve d, =2 as well as a
decoding delay of one bit interval. In particular, the class of binary full response
CPM signals with modulation index h=1/2 and equivalent phase pulse f(r) which
satisfies the conditions f(0)=0,f(7,)=1/2 is appropriate an example of which is
Amoroso’s sinusoidal frequency-shift-keying (SFSK)[6] for which

f()= d l_sm?.m/];’ 0<t<T, (32)
27T, 21/ T,

3.2 The Memory Two Case

For memory two, the pulse shape is given by

p(t)= %[so(t)“%(t)'*'so(t_ 7;;)—Sz(t“ 7;,)+So(f"27;,)“31(f— 27;,)]

= %[so(t)+so(t" T,)+s,(t =27, )+ 5,(t) — 5, (2 - Z,)—sl(t—sz)], 0<r<3T,
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(33)
with Fourier transform

P(f) = %[(1 4 1 ) [P s (e 4 [ s, (e o
—e 2% J;)Tb 5, (t)e 2P dt — ™+ J:)b 5,(t)e *7 dt]
Applying (34) to (25b) and letting s,() = 5,(¢) — 5,(¢) + 5,(¢) in accordance with (5a) we
obtain the bandpass spectral symmetry condition

oISy J'T”(so(t)e‘ﬂmr) 12 g 4 U] )T"J. ( o(t)e” ’2”"’) gy
0

+J s,()e” 1275” e 2 gy — e127f(fs+f)TbJ’ ( L(t)e” 1279‘1) it gy

. . . - B 2
+ J‘o b ( s, (t) e—;zw)e—;zm dt — e—:4n(f,+f)Tb L b ( s, (t) o127 ) eI dt‘

= |2 1), J‘Tb (s;(t)ejzm:) e 2% g + o/ )T, J’oTb (s;(t) ejzmt)e—ﬂﬂfr dt

+j sz(t)efz"f ') ~iat gy @i~ ) J' ( (t)e’w‘) 72 gy (35)

+J s] (’)eﬂm) i gy gi 4 f)Tbj ( (t)e’z"f’) ‘12"f'dt|2

Analogous with (27), satisfying (35) implies the set of conditions

5, () + 5,(8) = (57 (£) + 53(£))e’*™* (36a)

5o(1) = 5,(£) = %5 55 (£) = 5, (1) Je/*™ (36b)

5o(1) = 5,(1) = " (53(1) - 57 (1)) (36¢)
Again letting f, =1/4T, and summing (36a), (36b) and (36¢) gives

5,(1)+5,(1) = (] (1) + 5 (1) )™ (37a)

so(t) = 55(1)e’™'™ (or equivalently s,(¢) = 5 (r)e’™ T”) (37b)

5o(2) = 5,(2) = (55 (1) = 5 ()™ (37¢)

Actually, (37c) is not an independent condition since it can be derived from (37a)
and (37b). Thus, (37a) and (37b) are sufficient to determine the signal design.

Following along the lines of (29) and (30) the equivalent PSD of the memory
two modulation may be found. In particular, the Fourier transform of the
equivalent pulse shape in (8) is given as
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PU) =[S () + S,(F)+ € (8 (1) = () + € HS() = S ()] (38)

Using the additional relation Sy(f)=5,(f)+S,(f)-S,(f) to achieve finite decoding
delay, one immediately gets the desired equivalent lowpass PSD as

Pl ) = 80+ e s 57+ a0) = S+ af #8047 4)

aref(5 (7 S5k
+2 Re{(sé (f +2) =S, + ) Solf +) - 57 + ﬁ))e-zfr(wﬁ)n}

aref(sr+ )+ sl + )=l )

(39)
which using (37) can be shown to be an even function of frequency as is necessary.
4. Optimizing the Bandwidth Efficiency

Having now obtained expressions for the equivalent baseband PSD, it is now
straightforward to use these to determine the sets of signals that satisfy all of the
previous constraints and in addition maximize the power within a given
bandwidth B. In mathematical terms, we search for the set of signals that for a
given value of B maximizes the fractional in-band power

B/2 G f df
n_J—B/Z ( ) G(f)é

C[Gnar

subject to the unit power constraint

Lip(f + =) (“0)

1 7% 2 1 = 2 _ . B
—T;L |s:(2) dt_?,,LWf)l di=1, =012, ,M~1 (41)

4.1 Memory One Case

For the case of v =1 we observed that the entire signal set may be determined
from the single complex signal s5,(z). Thus, the optimization of bandwidth efficiency
corresponds to substituting the PSD of (31) (which is entirely specified in terms of
the Fourier transform of s,(t)) into (40) and then maximizing 7 subject to (41). Such
a procedure would result in an optimum S,(f) from whose inverse Fourier

2
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transform one could determine the optimum signal set. Since S,(f) exists, in
general, over the entire doubly infinite frequency axis, it is perhaps simpler to
approach the optimization in the time domain since s,(¢) is indeed time-limited to
the interval 0<¢<7,. To do this we need to first rewrite the PSD of (41) in terms of
5,(¢) rather than §,(f) and then perform the integrations on f required in (40).
After considerable manipulation, and for simplicity of notation normalizing 7, =1
(i.e., BT, = B), it can be shown that

Jm G(f)df = BJ;: j(: 5o (t)sg()eF [sinc nB(t—1)—j —;—sinc nB(t-T+1)

-B/2
+j %sinc mB(t—1— 1)]dtd1' (42)

1 1 o1 CIE(eTIE . .
+ B Im{fo J:) 5o(£)s,()e "+ [sinc 7B(t — T + 1)+ sinc B(t — 7 — 1)]a’tdr}

where sinc x£sinx/ x. Furthermore, it is straightfoward to show that

[Ca(rar=1 : (43)
and thus 7 is given directly by (42).

The maximization of (42) subject to the energy constraint of (41) has been
carried out numerically using the MATLAB® optimization toolbox function
“fminunc” (BFGS quasi-Newton method of convergence). In particular, for each
value of B (BT, if T, #1) the optimum complex signal s,(¢) (represented by N
uniformly spaced samples in the interval (0,1) is determined from which the
fractional out-of-band power 1-17 is calculated using (42) for 1. Because of
complexity issues involved in computing the optimum solution, the number of
sample points N is limited to 64. Furthermore, since the Gaussian integration
required to evaluate with high accuracy the double integral of (42) requires a much
higher density of sample values (not necessarily uniformly spaced), then to allow
for Fourier interpolation we assume the signal to be bandlimited® to the Nyquist
rate, i.e.,, 32 (32/7T, if T, #1). Because of this bandlimiting assumption, certain
optimum signal waveforms (particularly those at small values of B) which exhibit a
sharp discontinuity will have a ringing behavior. This ringing behavior can be
minimized by additional interpolation (filtering) but has proven difficult to
eliminate completely.

Figs. 4a-f are plots of the optimum real and imaginary parts of s,(¢) versus ¢ at

®0f course, in reality the continuous time-limited signal s,(#) would have infinite bandwidth.
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distinct values of B in the interval 0< B<3. For small values of B we observe that
the real part of s,(r) has sharp discontinuities at t=0 and #=1 and thus exhibits the
ringing behavior alluded to above. As B increases the sharpness of the
discontinuity at the edges diminishes and in the limit of large B, both the real and
imaginary parts of s,(t) approach a sinusoidal behavior with unit period.
Specifically, s,(t) tends toward the form -¢,sin2m + j(B, + o, cos2m) where o,,0,,f,
are constants that also must satisfy the unit energy constraint of (40), i.e.,
B} +%(a} +a3)=1. Fig. 5 is the corresponding plot of optimum (minimum)
fractional out-of-band power versus B. Also shown are corresponding results for
MSK and SFSK modulations which can readily be found in [4, Fig. 2.11]. We
observe that by optimizing the signal set at each value of B without loss in dZ;, or
finite decoding delay performance, we are able to obtain a significant improvement
in bandwidth efficiency. The quantitative amount of this improvement is given in
Table 1 for the 99% and 99.9% bandwidths corresponding respectively to the -20 dB
and -30 dB out-of-band power levels.

Table 1

Bandwidth Efficiency Performance of
TCM with Prescribed Decoding Delay

Optimum Signals  MSK

v=1 v=2
1/ B, T, (bps/ Hz) 0.896 1.23 0.845
% Improvement over MSK 6.04 45.6
1/ B,y 4T, (bps/ Hz) 0.659 0.366

% Improvement over MSK 79.7

4.2 Memory Two Case

Analogous to what was done for the memory one case, we need to maximize the
fractional in-band power of (40) using now (31) for G(f). Expressing the various
Fourier transforms of (31) in terms of their associated signal waveforms and then
performing the integration on frequency between —B/2 and B/2 as required in (40)
produces the following result (again normalizing 7, =1):

[, =X F (#4)

-B/2
i
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where

B etpl e
B =2 [ [P0+ @) @)+ sP(0)) 7 sine mB(e - r)drde
P = L ‘Jl (532)(’) - ng)(‘ ))(&()2)(7 )— ng) (T))*e”' He-?inc nB(t - T)dtdt

B=2 [ (s200) - 2 (0) (s (2) - sO(7)) €2 sine 7B(t - 7)drdz

45)
B g Y _jE(r-T+1) . (
P = 2Re{z jo jo (s§,2>(t)—s;”(t))(sf”(f)+s;2>(f)) e 3™ sinc nB(t - T+ l)dtdr}

B Y jE(teTel) .
P =2 Re{z“; JO (s(()z’ (t)-s? (t))(s((,z) (1)- sgz)(r)) e H " sine mB(r -7+ l)dtd’t}

B g Y jE(1-742) .
P= 2Re{Z jo jo (s ~s2(0))(s(2) + 52(7)) €7 Dsinc nB(r -7 + 2)dtdr}

From the constraint in (37b), s{?(t) can be expressed in terms of s"(f) and then
substituted in (45). Thus, the optimization problem reduces to finding only two
signals, s;”(¢) and s () by joint maximization of (44) combined with (45). (Note
that 5{”(f) can be found from s () = s () - s () + s (1) once s(t) and s?(r) are
determined).

Superimposed on Fig. 5 are the optimum fractional out-of-band power results
for the memory two case. Due to the extremely time-consuming nature of the
computer algorithms that perform the joint optimization procedure, particularly at
low levels of fractional out-of-band power where extreme accuracy in satsifying the
constraints is required, only results corresponding to values of BT, <1 (or
equivalently B<1 for 7, =1) have been obtained thus far. Nevertheless, we are able
to extract from these results the bandwidth efficiency improvement relative to MSK
for the 99% (-20 dB) out-of-band power level and this is included in Table 1. We
observe that there is a significant improvement in out-of-band power performance
with no power efficiency penalty by going from a memory one (1 bit decoding delay)
modulation to one that has memory two (2 bit decoding delay).
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Fig. 1. (a) Trellis-coded modulation complex baseband transmitter (b) Special case of “MSK” (v = 1)
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decomposition of CPM
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